Date: Spring 2014

Credit Hours: 2

Prerequisite(s):

Delivery Method:
☑ Lecture 1 Contact Hours (1 contact = 1 credit hour)
☐ Seminar 0 Contact Hours (1 contact = 1 credit hour)
☑ Lab 2 Contact Hours (2 contact = 1 credit hour)
☐ Clinical 0 Contact Hours (3 contact = 1 credit hour)
☐ Online
☐ Blended

Offered: ☐ Fall ☑ Spring ☐ Summer

IAI Equivalent –Only for Transfer Courses-go to http://www.itransfer.org:

CATALOG DESCRIPTION:
This course is designed to safely introduce all components, circuits, and principles commonly used in industry, and to fully acquaint the student with principles of pneumatic power. Practical working pneumatic circuits with many variations will be developed in a laboratory environment. Electro-mechanical exercises tie machine pneumatic power and electrical behavior together for industrial understanding. This course is competency-based instruction.
GENERAL EDUCATION GOALS ADDRESSED

[See the last page of this form for more information.]

Upon completion of the course, the student will be able:

[Choose those goals that apply to this course.]

☐ To apply analytical and problem solving skills to personal, social and professional issues and situations.
☐ To communicate orally and in writing, socially and interpersonally.
☐ To develop an awareness of the contributions made to civilization by the diverse cultures of the world.
☐ To understand and use contemporary technology effectively and to understand its impact on the individual and society.
☐ To work and study effectively both individually and in collaboration with others.
☐ To understand what it means to act ethically and responsibly as an individual in one’s career and as a member of society.
☐ To develop and maintain a healthy lifestyle physically, mentally, and spiritually.
☐ To appreciate the ongoing values of learning, self-improvement, and career planning.

EXPECTED LEARNING OUTCOMES AND RELATED COMPETENCIES:

[Outcomes related to course specific goals.]

Upon completion of the course, the student will be able to:

1.0 Apply basic formulas to determine potential energy, kinetic energy, force, work, power, pressure, and vacuum energy.
2.0 Understand the use of terminology common to pneumatic applications.
3.0 Understand and use standard symbols common to pneumatic circuits.
4.0 Understand and perform calculations involving the utilization of vacuum in pneumatic applications.
5.0 Perform calculations necessary to determine the size of actuators required in various applications.
6.0 Understand the operation of and the pneumatic circuitry required for:
 a. Check valves
g. Compressors
 b. Accumulator
h. Motors
c. Cylinders
i. After coolers
d. Flow control valves
j. Driers
e. Directional control valves
k. FRL units
f. Pressure control valves
l. Receivers
7.0 Design a basic pneumatic circuit to accomplish a simplified task.

COURSE TOPICS AND CONTENT REQUIREMENTS:

I. Evolution of Compressed Air
II. Force Transmission Through Air
 A. Force and Pressure
 B. Cylinders/Intensifiers
 C. Pascal’s Law
 D. Gauges/Pressure/Vacuum
III. Energy Transmission Through a Pneumatic System,
 A. Gases/Molec
B. Compressors - How They Work
C. Flow Rate - Free Air vs Standard Air

IV. Control of Pneumatic Energy
 A. Valves
 B. Control of Pressure and Flow
 C. Pneumatic Symbols

V. Compressors
 A. Types - Positive Disp., Piston, Vane, Screw
 B. Multistage Compressors
 C. Compressor Location

VI. Aftercoolers, Driers, Receivers, and Air Distribution
 A. Compressed Air/Condensation
 B. Loop Systems/Leaks

VII. Check Valves/Cylinders and Motors
 A. Check Valve Functions

VIII. Directional Control Valves
 A. Types 2-way, 3-way, 4-way, and various spool construction
 B. Sizing a valve for flow - CV - Flow Coefficient

IX. Flow Controls Valves and Silencers
 A. Orifice/Size Affects Flow/Needle Valves
 B. Silences - Mufflers

X. Regulators/Boosters, and Sequence Valves
 A. Types
 B. Dual Pressure Circuits
 C. Air/Oil Boosters

XI. Air Preparation
 A. Contaminants in Pneumatic Systems
 B. Filtrations
 C. Lubrication
 D. FRL Units

XII. Vacuum Devices and Pneumatic Circuits
 A. Pascal's Law
 B. Maximum Vacuum Pick-up and Practical Limitations
 C. Single and Double Acting Cylinders
 D. Two-hand and Reciprocating Circuits
 E. Intensifier Circuits
 F. Air Motor and Rotary Actuator Circuits

INSTRUCTIONAL METHODS:
1. Lecture
2. Demonstration
3. Videos
4. Laboratory experiments

INSTRUCTIONAL MATERIALS:
STUDENT REQUIREMENTS AND METHODS OF EVALUATION:
1. Ability to work as a member of a team.
2. Satisfactory performance on all written exams.
3. Satisfactory performance on all laboratory assignments.

OTHER REFERENCES

“This workforce solution was funded by a grant awarded by the U.S. Department of Labor’s Employment and Training Administration. The solution was created by the grantee and does not necessarily reflect the official position of the U.S. Department of Labor. The Department of Labor makes no guarantees, warranties, or assurances of any kind, express or implied, with respect to such information, including any information on linked sites and including, but not limited to, accuracy of the information or its completeness, timelines, usefulness, adequacy, continued availability, or ownership. This solution is copyrighted by the institution that created it. Internal use, by an organization and/or personal use by an individual for non-commercial purposes, is permissible. All other uses require the prior authorization of the copyright holder.”
Course Competency/Assessment Methods Matrix

IMT 1206; Industrial Pneumatics

For each competency/outcome place an “X” below the method of assessment to be used.

<table>
<thead>
<tr>
<th>Assessment of Student Learning</th>
<th>Assessment Options</th>
</tr>
</thead>
</table>

Assessment Measures – Are direct or indirect as indicated. List competencies/outcomes below.

1.0 Apply basic formulas to determine potential energy, kinetic energy, force, work, power, pressure, and vacuum energy.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td></td>
</tr>
<tr>
<td>Indirect</td>
<td></td>
</tr>
</tbody>
</table>

2.0 Understand the use of terminology common to pneumatic applications.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td></td>
</tr>
<tr>
<td>Indirect</td>
<td></td>
</tr>
</tbody>
</table>

3.0 Understand and use standard symbols common to pneumatic circuits.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td></td>
</tr>
<tr>
<td>Indirect</td>
<td></td>
</tr>
</tbody>
</table>

4.0 Understand and perform calculations involving the utilization of vacuum in pneumatic applications.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td></td>
</tr>
<tr>
<td>Indirect</td>
<td></td>
</tr>
</tbody>
</table>

5.0 Perform calculations necessary to determine the size of actuators required in various applications.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td></td>
</tr>
<tr>
<td>Indirect</td>
<td></td>
</tr>
</tbody>
</table>
IMT 1206; Industrial Pneumatics

For each competency/outcome place an “X” below the method of assessment to be used.

<table>
<thead>
<tr>
<th>Assessment of Student Learning</th>
<th>Assessment Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment Measures – Are direct or indirect as indicated. List competencies/outcomes below.</td>
<td></td>
</tr>
</tbody>
</table>

6.0 Understand the operation of and the pneumatic circuitry required for:
- a. Check valves
- b. Accumulator
- c. Cylinders
- d. Flow control valves
- e. Directional control valves
- f. Pressure control valves
- g. Compressors
- h. Motors
- i. After coolers
- j. Driers
- k. FRL units
- l. Receivers

| | X | X | X | X | X |

7.0 Design a basic pneumatic circuit to accomplish a simplified task.

| | X | X | X | X | X |