DIVISION: Workforce Development

COURSE: ELT 2254 – Electrical Capstone

Date: Fall 2017

Credit Hours: 3

Prerequisite(s): Consent of ELE/ELT Program Coordinator

Delivery Method:
- Lecture 2 Contact Hours (1 contact = 1 credit hour)
- Lab 2 Contact Hours (2-3 contact = 1 credit hour)

Offered: □ Fall ☑ Spring □ Summer

IAI Equivalent – Only for Transfer Courses-go to http://www.itransfer.org:

CATALOG DESCRIPTION:

This course will give the student the opportunity to apply the knowledge and training obtained in the preceding courses culminating in two capstone projects. One project will be an industrial group project. One project will be an automation project utilizing a micro-controller or PIC. Assignments will consist of analysis, synthesis, design, flow-charting, programming, and construction of an automation project. I/O interfaces and optical isolators in connection with any programmable interface controller will be utilized.
GENERAL EDUCATION GOALS ADDRESSED

Upon completion of the course, the student will be able:

☐ To apply analytical and problem solving skills to personal, social, and professional issues and situations.
☒ To communicate successfully, both orally and in writing, to a variety of audiences.
☒ To construct a critical awareness of and appreciate diversity.
☒ To understand and use technology effectively and to understand its impact on the individual and society.
☐ To develop interpersonal capacity.
☐ To recognize what it means to act ethically and responsibly as an individual and as a member of society.
☐ To recognize what it means to develop and maintain a healthy lifestyle in terms of mind, body, and spirit.
☐ To connect learning to life.

EXPECTED LEARNING OUTCOMES AND RELATED COMPETENCIES:

Upon completion of the course, the student will be able to:

1. Correctly state and apply quality theories.
 - Competency 1.1 State Demings twelve Quality steps.
 - Competency 1.2 Synthesize a use for each step.
 - Competency 1.3 Explain the correct use for four basic PC charts.
 - Competency 1.4 State the steps required for TQI

2. Program and flowchart simple Basic programs.
 - Competency 2.1 Define major Basic Commands
 - Competency 2.2 Define and Use Major Flowcharting symbols
 - Competency 2.3 Program a Basic program from a Flowchart
 - Competency 2.4 Program and flowchart final project

3. Correctly explain and use optical isolators.
 - Competency 3.1 Explain Theory of operation
 - Competency 3.2 Use Discrete and Analog signal converters
 - Competency 3.3 Design and use an Input Conditioner
 - Competency 3.4 Design and use an Output Conditioner
 - Competency 3.5 Build appropriate interfaces for Final Project

4. Utilize and build communication interfaces.
 - Competency 4.1 Design and build Communication hardware
 - Competency 4.2 Connect appropriate cabling to allow for programming
5. Design, Build and Present an automation project.
 Competency 5.1 Design an automation project
 Competency 5.2 Prototype and build a final project
 Competency 5.3 Explain and present project and theory of operation

6. Utilize Work Place Skills
 Competency 6.1 Perform each position in a small group
 Competency 6.2 Give Oral and written reports

MAPPING LEARNING OUTCOMES TO GENERAL EDUCATION GOALS
[For each of the goals selected above, indicate which outcomes align with the goal.]

<table>
<thead>
<tr>
<th>Goals</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Goal</td>
<td></td>
</tr>
<tr>
<td>To communicate orally and in writing,</td>
<td>Competency 5.1 Design an automation project</td>
</tr>
<tr>
<td>socially and interpersonally.</td>
<td>Competency 5.2 Prototype and build a final project</td>
</tr>
<tr>
<td></td>
<td>Competency 5.3 Explain and present project and theory of</td>
</tr>
<tr>
<td></td>
<td>operation</td>
</tr>
<tr>
<td>Second Goal</td>
<td></td>
</tr>
<tr>
<td>To understand and use technology</td>
<td>Competency 6.1 Perform each position in a small group</td>
</tr>
<tr>
<td>effectively and to understand its impact</td>
<td>Competency 6.2 Give Oral and written reports</td>
</tr>
<tr>
<td>on the individual and society.</td>
<td></td>
</tr>
</tbody>
</table>

COURSE TOPICS AND CONTENT REQUIREMENTS:
1. Quality / Total Quality Improvement
2. College to Industry Concepts
3. Process Control Charts
4. Q & P Basic
5. Flowcharting
6. Optical isolators
7. Discrete input devices
8. Analog input devices
9. Output devices
10. Communications
11. Project Design / Brain Storming
12. Stamp programming
13. Prototyping
14. Analysis / Synthesis
15. Construction
16. Presentation

INSTRUCTIONAL METHODS:
1. Lecture - Discussion
2. Laboratory sessions with practical applications stressed
3. Required reading assignments
4. Special Projects
5. Socratic method
6. Group work
7. Think Tank Modules
8. Tours / Guest Speakers

INSTRUCTIONAL MATERIALS:
1. Internet
2. Qbasic & Pbasic software
3. Paralax Stamp experiment boards
4. SIU website
5. Think Tank Modules

STUDENT REQUIREMENTS AND METHODS OF EVALUATION:
1. Completion of laboratory reports as assigned.
2. Meeting objectives as indicated by responses to written questions and performance examinations.
3. Completion of final Automation Project.
4. Completion of Industrial Group Project.
5. Industrial Group Project and Automation Project:
 Lab 30%
 Quizzes and Tests 20%
 Capstone Project 30%
 Speech and Presentation 20%

OTHER REFERENCES
• DC/AC Foundations of Electronics. R. Jesse Phagan, G-W Publishing
• Digital Computer Electronics, Malvino, Glenco Publishing
• Modern Residential Wiring, Henke-Konopasek/Holzman, G-W Publishing
• Fundamentals of Linear Electronics, Cox, Delmar Publishing
• Instrumentation, Kirk/Rimboi, ATP Publishing
Course Competency/Assessment Methods Matrix